An Anion-Induced Hydrothermal Oriented-Explosive Strategy for the Synthesis of Porous Upconversion Nanocrystals
نویسندگان
چکیده
Rare-earth (RE)-doped upconversion nanocrystals (UCNCs) are deemed as the promising candidates of luminescent nanoprobe for biological imaging and labeling. A number of methods have been used for the fabrication of UCNCs, but their assembly into porous architectures with desired size, shape and crystallographic phase remains a long-term challenging task. Here we report a facile, anion-induced hydrothermal oriented-explosive method to simultaneously control size, shape and phase of porous UCNCs. Our results confirmed the anion-induced hydrothermal oriented-explosion porous structure, size and phase transition for the cubic/hexagonal phase of NaLuF4 and NaGdF4 nanocrystals with various sizes and shapes. This general method is very important not only for successfully preparing lanthanide doped porous UCNCs, but also for clarifying the formation process of porous UCNCs in the hydrothermal system. The synthesized UCNCs were used for in vitro and in vivo CT imaging, and could be acted as the potential CT contrast agents.
منابع مشابه
Microwave-Hydrothermal Synthesis and Characterization of High-Purity Nb Doped BaTiO3 Nanocrystals
The synthesis of Nb doped BaTiO3 has been investigated under Microwave-Hydrothermal (MH) conditions in the temperature of 150°C for only 2 h using C16H36O4Ti, BaH2O2.8H2O and NbCl5 as Ba, Ti and Nb sources, respectively. Typical experiments performed on MH processing have not yet reported for Nb doped BaTi...
متن کاملConvectional hydrothermal synthesis of high-purity pesudo-cubic BaTi0.09Nb0.01O3 nanocrystals in rotary autoclave
Nano-sized BaTiO3 powders with particular Nb concentrations were prepared by Rotary- Hydrothermal (RH) method. Hydrothermal method was used at 180 °C for 5 hours with new Ti pressure and the teflon vessel was rotated at a speed of 160 rpm during the hydrothermal reaction. New hydrothermal method was used instead of previous solid state reaction for the system BaTiO3±Nb<sub...
متن کاملConvectional hydrothermal synthesis of high-purity pesudo-cubic BaTi0.09Nb0.01O3 nanocrystals in rotary autoclave
Nano-sized BaTiO3 powders with particular Nb concentrations were prepared by Rotary- Hydrothermal (RH) method. Hydrothermal method was used at 180 °C for 5 hours with new Ti pressure and the teflon vessel was rotated at a speed of 160 rpm during the hydrothermal reaction. New hydrothermal method was used instead of previous solid state reaction for the system BaTiO3±Nb<sub...
متن کاملControlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level.
Strong red upconversion luminescence of rare-earth ions doped in nanocrystals is desirable for the biological/biomedical applications. In this paper, we describe the great enhancement of red upconversion emission (4F9/2 --> I15/2 transition of Er3+ ion) in NaYF4:Yb3+, Er3+ nanocrystals at low doping level, which is ascribed to the effectiveness of the multiphonon relaxation process due to the e...
متن کاملBi-functional NaLuF4:Gd3+/Yb3+/Er3+ nanocrystals: hydrothermal synthesis, optical and magnetic properties
Magnetic-fluorescent lanthanide doped sodium lutetium fluoride (NaLuF4:Yb3+/Er3+/Gd3+) nanocrystals were synthesized via facile hydrothermal method by varying concentration of Gd3+. Powder X-ray powder diffraction (PXRD), scanning electron microscopy (SEM),transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), p...
متن کامل